Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2308293, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282181

RESUMEN

Zeolites have been widely applied as versatile catalysts, sorbents, and ion exchangers with unique porous structures showing molecular sieving capability. In these years, it is reported that some layered zeolites can be delaminated into molecularly thin 2-dimensional (2D) nanosheets characterized by inherent porous structures and highly exposed active sites. In the present study, two types of zeolite nanosheets with distinct porous structures with MWW topology (denoted mww) and ferrierite-related structure (denoted bifer) are deposited on a substrate through the solution process via electrostatic self-assembly. Alternate deposition of zeolite nanosheets with polycation under optimized conditions allows the layer-by-layer growth of their multilayer films with a stacking distance of 2-3 nm. Furthermore, various hierarchical structures defined at the unit-cell dimensions can be constructed simply by conducting the deposition of mww and bifer nanosheets in a designed sequence. Adsorption of a dye, Rhodamine B, in these films, is examined to show that adsorption is dependent on constituent zeolite nanosheets and their assembled nanostructures. This work has provided fundamental advancements in the fabrication of artificial zeolite-related hierarchical structures, which may be extended to other zeolite nanosheets, broadening their functionalities, applications, and benefits.

2.
J Am Chem Soc ; 143(29): 11052-11062, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264655

RESUMEN

Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Brønsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.

3.
Sci Adv ; 6(12): eaay8163, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32219163

RESUMEN

The most effective approach to practical exploitation of the layered solids that often have unique valuable properties-such as graphene, clays, and other compounds-is by dispersion into colloidal suspensions of monolayers, called liquid exfoliation. This fundamentally expected behavior can be used to deposit monolayers on supports or to reassemble into hierarchical materials to produce, by design, catalysts, nanodevices, films, drug delivery systems, and other products. Zeolites have been known as extraordinary catalysts and sorbents with three-dimensional structures but emerged as an unexpected new class of layered solids contributing previously unknown valuable features: catalytically active layers with pores inside or across. The self-evident question of layered zeolite exfoliation has remained unresolved for three decades. Here, we report the first direct exfoliation of zeolites into suspension of monolayers as proof of the concept, which enables diverse applications including membranes and hierarchical catalysts with improved access.

4.
Dalton Trans ; 47(9): 3029-3037, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29485158

RESUMEN

Layered zeolite materials with FER layer topology can produce various condensed and expanded structures including zeolite frameworks, FER and CDO, their interlayer expanded forms (IEZ), and organic-intercalated and pillared derivatives. This work concerns pillaring of the surfactant-swollen derivative with a gallery height of ca. 2.5 nm between layers by treatment with tetraethylorthosilicate (TEOS) at room and elevated temperatures. The materials obtained at 100 °C and higher showed unusual properties including 2 nm pores on the micro/mesoporous border and disordered layer packing indicated by the absence of distinct low angle interlayer peaks at d-spacing >3 nm (∼3° 2θ Cu Kα radiation) in the X-ray diffraction pattern (XRD). TEOS treatment at room temperature produced a pillared molecular sieve with the expected mesoporous characteristics, namely a pore size of around 3 nm and a high intensity low angle (001) peak at 2.3° 2θ, and a d-spacing of 3.8 nm, in the XRD. The characterization aiming to elucidate the nature of the obtained unusual products included gas adsorption isotherms, aberration corrected (Cs-corrected) Scanning Transmission Electron Microscopy (STEM) studies and 29Si solid state NMR. BET surface area values decreased with the temperature of TEOS treatment from approximately 1200 m2 g-1 to ∼900 and 600 m2 g-1, at room temperature, 100 °C, and 120 °C, respectively. The 29Si solid state NMR revealed the presence of both Q3 ((SiO)3SiOX, X = H or minus charge) and Q4 ((SiO)4Si) centers giving separated signals up to the pillaring step. After pillaring at 100 °C and calcination, the nominal intensity ratios Q4 : Q3 were 2.17 and 2.61 but the signals were merged into one broad peak indicating the structural heterogeneity of Si-O coordination. The microscopy showed the presence of FER layers in the samples but the overall structure and composition were not well-defined. The observed unusual disorganization and possible partial degradation of layers during pillaring may result from the combination of high temperature, alkalinity (surfactant hydroxide) and siliceous composition of the layers. The obtained pillared products are of interest for the preparation of larger pore catalysts and sorbents or controlled drug delivery.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 196: 281-288, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29459158

RESUMEN

Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500°C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...